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I. INTRODUCTION 

In this lecture I want to introduce you to some recent theoretical work (Cl]- 

[7]) that represents a significant and long overdue departure from the mainstream of 

ideas on the physics of colliding- beam storage rings. The goal of the work in 

question is to understand analytically--without recourse to computer simulation--the 

role that dissipation and noise play in the observed colliding-beam behavior of 

electron-positron storage rings. More traditional approaches have given such 
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"thermal" processes relatively little attention, with results that have been 

qualitative at best. For a comprehensive overview of the conventional theoretical 

literature, see references [8]-[ll]. 

Here are the colliding-beam phenomena that storage ring theories must explain: 

-In proton-proton/antiproton colliders, enhanced beam loss when the machine 

tunes approach nonlinear resonances of anomalously high order. 

-In electron-positron colliders, strong tune-dependence of loss rates and 

luminosity; anomalously low maximum storable currents, and beam heights that grow 

("blow up") markedly with beam currents, with consequent degradation of luminosity. 

For a comprehensive picture of colliding beam storage ring phenomenology, see 

references [8],[9],[12], and [Zl]. 

Strictly speaking, theories that ignore damping and/or noise altogether can 

provide a complete ideal description only of proton-proton/ antiproton colliders. 

The dominant source of damping and noise in a ring with otherwise quiet components 

is synchrotron radiation. In rings that store protons and/or antiprotons, radiation 

damping times are between days (SSC) and months (Sp$,Tevatron). In 

electron-positron rings, radiation damping times are typically measured in 

milliseconds. 

In the current state of the art, a theory of colliding effects in a storage 

ring can include--apart, possibly, from radiative damping and fluctuation--linear 

transverse restoring forces due to quadrupole magnets, longitudinal oscillations, 

and coulombic beam-beam encounters, idealized as instantaneous nonlinear kicks. 

Magnet nonlinearities, wake fields, beam-gas scattering, inelastic or 

non-electromagnetic inter-beam interactions, and intrabeam process are generally 

ignored. When computer simulation is not involved, it is comnon in addition to 

assume--unrealistically--that the current in one beam is much smaller than the 

current in the other. In such a "weak-strong" limit, the high current, strong beam 

is unaffected by collisions, while the weak beam reduces to an ensemble of uncoupled 
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particles, all independently perturbed by the opposing beam. For a discussion of 

the support that computer simulation provides for such simplifications, see 

reference [9], and the contribution of Myers to these Proceedings. 

Traditionally--excepting the work to be described below--theorists have chosen 

to analyze such models in terms of Hamiltonian chaos, nonchaotic Hamiltonian 

nonlinear resonance, coherent (rigid body) bunch motion, and collective (plasma) 

oscillations. The balance between these effects and the damping and noise in 

electron-positron storage rings has largely been ignored. This style of analysis 

has produced a successful theory of ISR beam loss under certain conditions [13], and 

is also claimed to provide an account of Sp$ operating limits [14]. 

This style of analysis often begins by identifying regions of phase space in 

which unstable processes can act. Such identifications are meaningless, however, 

unless one can estimate the beam populations that occupy such regions. In the case 

of protons and antiprotons, these populations can in principle be obtained, over 

llmited but non-negligible periods of time, directly from beam distributions at 

injection, and such distributions are understood well enough for some purposes. By 

contrast, in the case of the more strongly damped electrons and positrons, 

luminosity, loss rates, etc. can only be obtained from distributions that must be 

presumed to have relaxed rapidly to an equilibrium that is largely independent of 

initial conditions, and which therefore must be calculated in an entirely self- 

consistent manner, from first principles. 

In this lecture, we shall consider three schemes that have recently been 

proposed for carrying out analytical calculations of equilibrium beam distributions, 

or related quantities, in weak-strong electron-positron colliding beam storage 

rings. In section II we shall discuss the formalism of Kheifets ([l]-[3]); in 

section III we shall discuss the formalism of F. Ruggiero [4]; and in section IV we 

shall discuss my own formalism [5]-[7]. 
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Before proceeding to detailed descriptions, let us first place the physical 

problem at hand In the larger context of statistical mechanics in general, and let 

us also highlight in advance some of the more important differences between the 

three approaches under discussion. 

The problem of electron and positron beams colliding in a storage ring differs 

from the familiar textbook paradigms of statistical mechanics (or, more narrowly, of 

stochastic differential equations) in two principal ways: 

First the notion of temperature cannot be formulated in a useful way for an 

electron-positron storage ring. Indeed, under the most idealized circumstances 

(azimuth-independent fields, no coupling) the dynamics of synchrotron radiation [15] 

would have us assign no less than three very different phenomenological temperatures 

to the three dimensions in which an electron or positron oscillates about its bunch 

center. Under more realistic circumstances, even such a fragmented sort of 

temperature has no practical meaning. 

Second, the environment of electrons or positrons in a storage ring varies 

periodically on a timescale much shorter than the timescale of (the analogue of) 

thermal relaxation: An electron or positron receives a delta-function kick from some 

bunch in the opposing beam several times per revolution, while the damping time is 

0(103)-0(104) revolutions. Thus, such a system is far from the adiabatic limit. In 

particular, even if the notion of temperature could be formulated for a storage 

ring, one could not bypass a complicated dynamical calculation in order 

automatically to conclude that the equilibrium beam distribution is obtained by 

exponentiating a time-dependent Hamiltonian , as in the familiar Boltzmann factor. 

For these reasons, the problem of electron-positron storage rings requires the 

development of new theoretical techniques. 

The formalisms of Kheifets, Ruggiero, and myself are all perturbative 

approaches to the calculation of equilibrium beam distributions. They differ in the 

choice of perturbative parameter(s). Kheifets uses the strong-beam (vertical) 
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tuneshift E, which is typically a few percent in high energy e+e- colliders. 

Ruggiero uses both E and the transverse damping rate (normalized to revolution 

frequency T-l) T7, which, as already indicated, is O(10-4)-O(10-3). (In this review 

we shall not distinguish between vertical and horizontal damping.) I use only 7 as 

a perturbative parameter. (Note that in all cases 7 also sets the scale of 

anisotropic noise, as we explain below.) 

Our experience with nonstatistical Hamiltonian mechanics teaches us to be wary 

of perturbative expansions in nonlinearity strengths such as E. We expect to 

encounter spurious unbounded time dependences that mask frequency shifts, and/or 

"small denominator" singularities that mask the appearance of topologically 

distinctive resonance structure in phase space. Resonant small denominators appear 

both in Kheifets' and in Ruggiero's calculations, and in either case it is the 

presence of damping and noise that keeps their expressions from becoming infinite. 

My formalism was developed specifically to bypass small denominators, by 

building the true perturbed distortion of Hamltonian orbits directly into the 

definitions of the variables used to parametrize phase space. Thus my scheme is 

uniquely suited to critical analysis of the resonant processes traditionally invoked 

to account qualitatively for colliding beam behavior. Ironically, the small-r limit 

seems in principle to bring about its own variant of the small denominator problem, 

although computer simulation of some simple models [16] seems so far to indicate 

that this is not very important. 

Some other comparisons worth underscoring: None of these formalisms has yet 

been extended to encompass longitudinal phase space. Indeed, only Kheifets has 

succeeded in carrying out his calculations without disregarding one of the 

transverse degrees of freedom. Accordingly, only Kheifets' calculations have been 

meaningfully compared with experimental data, with some interesting results. 
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These three approaches have in cornnon their use of the Fokker-Planck equation 

to define the time evolution of weak-beam phase space densities. If the 

displacement of a weak-beam particle from its bunch center develops in time 

according to 

. . 
xi t 7(t]ii - Fi(:,t] = $[t)r,(tl I (1.1) 

where the ri are uncorrelated sources of normalized Gaussian white noise, then, for 

smooth 7.7, and ? the Fokker-Planck equation for the weak-beam distribution 

P[Z,W,t) is 

g t f(vig + Fig ) = +,[~v, + $ & )P . 
i 1 1 i 

(1.2) 

(For a discussion of simplifications made in arriving at (l.l), see [7]. For 

pedagogical simplicity, we ignore the distinction between time and the more comnon 

azimuth parameter s.) The quantities 7,f. and ? are all periodic as explicit 

functions of time. (Strictly speaking, we ought earlier to have referred to the 

time average, <7>, of 7, rather than to 7 itself.) As a function of ?, ? is 

conventionally the sum of a linear part, due to quadrupole magnets, and the 

beam-beam contribution 

E if, 6btk)+k(:) , (1.3) 

where the tk are collision times. The sequence of potentials {Fk} repeats as a 

function of k. The sequence {tk+l- tk} of collision-time spacing also repeats, with 

the same period. In what follows, the careful reader will recognize precautions 

that have been taken to avoid misusing (1.2) at collision times, where i' is 
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certainly not smooth. 

In the small -7 limit, X is generally taken to scale as O(&). When this is 

done, then we can be sure that the equilibrium solution--if it exists--to (1.2) has 

a nonsingular 74 limit, at least in the absence of beam-beam interactions (and away 

from linear resonance [7]). 

II. KHEIFETS' FORMALISM 

In order to unify the discussions in this and the next two sections, my 

presentation of Kheifets' result wlll differ somewhat from Kheifets' own. I will 

indicate briefly how Kheifets actually proceeded when I reach the point at which our 

two presentations begln to coincide. 

For simplicity (Kheifets himself does not make this simplification), we shall 

imagine only one interbunch collision per revolution, so that all fk are identical 

(sf) and all tkzkT. 

We seek as an equilibrium a periodic solution P of (1.2), with period T. 

Because (1.2) (or (1.1) In :-? space) is first order in the time derivative, it is 

sufficient to demand that 

lim P(:,?,t] 3 P(?,?,kT-) 
t+kT- 

(2.1) 

be independent of the integer k. We guarantee this inductively by equating 

P(:,;',O-) to P(r(',?,T-), the result of evolving P(?,?,O-) through time T. To evolve 

P[?,:,O+) to P[:,?,T-), we write 

P(jt,:,T-) = ~d2xodzvoGo(:,:,T;~0,~o,0)P(:0,:0,0f) = GoP(O+) , (2.2) 

where Go is the Green's function for (1.2) with the beam-beam kicks omitted. With 

linear magnets, Go can be calculated exactly in closed form (see,e.g. [7]), and is a 
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Gaussian in ?,?,;),, and ?o. To evolve P from O- to O+, we use (1.1) and (1.3) to 

write 

Plot) t P[?,?,o+] = P(:.?-t-E?f((:),o-) (2.3) 

So, combining (2.2) and (2.3), our equilibrium is defined (up to normalization) by 

~(0-1 = GP(O-) = jd2xod2voGo(:,~,T;:0,~o+E~F(:O],0~P~~o~~o~O-~ . (2.4) 

It is a simple matter to expand (2.4) in powers of E. With 

P(O-) E PO t EPlt..., and with 

G = I: ~[Ei'f[~o)~~vo]nGo a Go + EGl+... , 
n 

we have 

PO = GOP0 , 

Pl=GoPl+GIPo , (2.6) 

P2 = GOP2 + GIPl + G2Po..., 

with formal solutions 

(2.5) 
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pl = [i-Go]-lGl~o 

p2 = (I-G,]-~G,P, t (I-G,]-'G,P, + . . . 

= [(I-G~]-~G~]~P~ t [I-G,)-'G,P, + . . . . 

(2.7) 

(Note that if the right hand sides of (2.6)--with GOP0,GOPl,GOP2 etc. 

omitted--had nontrivial overlap with that solution of the time-reversed adjoint of 

(1.2) that is dual to PO, then the inverses in the right hand sides of (2.7) could 

not be defined. However, the dual in question is in fact constant in ?-? space, so 

that the overlaps in question are zero because of the powers of St 
VO 

in the 

definition of Gn,o. This still leaves the operation [l-Go]-l determined only up to 

addition of a constant multiple of PO, which serves to adjust the overall 

normalization. This adjustment is rendered unnecessary by the next step, and its 

physical interpretation.) 

Kheifets' general perturbative expressions can be obtained from (2.7) by 

expanding in powers of Go: 

m 

pl = m~oGomG1po 

P2 = ; G mG G "G P + ; G 'G P + . . . . 
m n=o 0 10 1 cl 

, 
k-oo 20 (2.8) 

Kheifets himself obtains the series' in (2.8) directly, by perturbatively 

calculating the time-dependent solution of (1.2) that equals PO at t=O-. Presuming 

that any solution of (1.2) relaxes to the desired equilibrium--but making no a 

priori assumption that "equilibrium" need be periodic--he arrives at what we call 

P[O-) by evaluating his solution at t=kT- (integral k) and taking the limit of 
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infinite k. (The powers of Go arise in this approach from unperturbed evolution 

through all possible integral multiples of T.) This procedure makes it clear that 

the normalization of PO carries over to the PO+EPl+... that corresponds to (2.8), 

since time evolution according to (1.2) preserves normalizations, by construction. 

Note that if 7 were regarded as a perturbation parameter, then this procedure would 

not have been possible, because we expect time evolution approximated by finitely 

many powers of 7 to look like relaxation only until t-O(l/<r>), and thereafter to 

approach no definite limit. 

Kheifets confines his explicit calculation to the mean square vertical beam 

amplitude(i.e. emittance) going into an interaction point in equilibrium, 

+< x;ta;2v; > +J[x;02 2 *2v2]P(?,:,0-]d2xd2v , (2.9) 

where 8; is the vertical beta function at an interaction point, and P is assumed 

normalized to unity. In camparisons with experiment, Kheifets uses (2.9) as a 

measure of the mean square weak beam half- height, <xi> (even though (2.9) and <x;> 

are really exactly equal only when c=O, and far from linear resonance [7]). He 

finds that when (2.8) is substituted into (2.9), and sumnations and integrations 

interchanged, then, through second order in E, every term in every sunation can be 

evaluated in closed form, assuming (as is appropriate for e'e- machines [15]) 

that <xE><<<x12> when <=O. This discovery rests on the fact that both PO and Go are 

Gaussians, and that the collision potentials fk can all be expressed in terms of 

integrals over Gaussians. 

With this result in hand, Kheifets finds, further, that the full order -C 

infinite sumnation can be carried out in closed form, and that the doubly infinite 

sum in order E2 can be reduced in a simple way to a singly infinite sum, which must 

be evaluated numerically. 
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We need not reproduce Kheifets' exact expression here. However, one aspect of 

the final infinite sum In O(C*] is worth highlighting: The sum has the form 

ih (e -<r>q,e*niv,q,e2niv,q I , 
q=o 

(2.10) 

where the Y. 
1 

are the unperturbed storage ring tunes. When the function h is 

expanded in powers of its arguments, (2.10) becomes an infinite series of subsums 

proportional to 

,io ce Z~iZ.Z-n<r>]q = [1-e2niZ.:-n<7>I-1 , (2.11) 

for integral ? and n. Thus we expect vertical emittance to show pole-like peaks in 

the tune plane, at J.?= integer, with inflnities regularized by nonzero damping. 

In some calculations, Kheifets includes the linear part of (1.3) (i.e. with 

the fk expanded in powers of ? and truncated at second order) in the unperturbed 

system, in order to treat at least part of the beam-beam Interaction exactly. When 

this is done, (2.11) implies pole-like peaks in weak beam vertical emittance as a 

function of strong beam current, since In this case : depends on E, and E is 

proportional to strong beam current, by definition. These peaks are the distinctive 

predictions of this formalism. 

(Note that when the linear part is removed from ?f, then the remainder--i.e. 

the new perturbation--is left with spurious linear growth at large ?, because the 

full ?f actually falls as l/T?\ at large 2. Presumably, this large- : distortion has 

little effect on the mean emittance, since the equilibrium distribution should in 

any event be sparse far from the beam center.) 

Figure 1 (next page), taken from [3] (with permission), shows comparison 

between Kheifets' calculations and the results of a weak/strong PEP experiment. The 

vertical axis represents the ratio of weak-beam height with to without collisions. 
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The solid (dashed) curves correspond to calculations that do (not) include the 

linear part of the beam-beam interaction in the unperturbed system. Different 

curves of the same type correspond to different phenomenological choices of storage 

ring parameters. None of the curves seems to fit this data particularly well, 

although the dashed curves seem to do better than the the solid ones. The situation 

in Figure 2, corresponding to a SPEAR experiment (also from [3], with permission) is 

more encouraging. All curves in this figure were calculated with the linear part of 

the collisions included in the unperturbed system. The abrupt climb in the data at 

about 9mA is the kind of structure that one would expect from the pole terms 
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characteristic of this theory. Curves 1 and 2, which come the closest to fitting 

this rise, also give encouraging fits to the shoulder in the region 2-6 mA. 

Unfortunately, whereas curve 1 appears to give the best fit overall, the parameters 

assumed in obtaining curve 2 are in fact the closest to the nominal parameters of 

the real storage ring. 

The reader who is not impressed with Figures 1 and 2 should realize that 

Kheifets' are the first analytical calculations even to obtain the right order of 

magnitude for e+e- beam blowup. 

It is worth noting that Kheifets partially compensates for his omission of 

longitudinal oscillations by making provision in his calculations for nonidentical 

interaction regions and intercollision betatron phases, which computer simulations 

have strongly implicated in beam blowup. 

III. RUGGIERO'S FORMALISM 

As mentioned in the introduction, Ruggiero restricts himself to models with 

only one dynamical degree of freedom (vertical, conventionally, since beams do not 

blow up horizontally); and, as in the preceding section, with only one beam-crossing 

per machine period T. 

He begins by noting that when x=c=O, then the operator G, which In this limit 

we shall call go, can easily be dlagonalized in closed form. In particular, let J 

and $ be the canonical action and angle for the periodic linear system with 

vanishing 7 and E; then for integral n, 

go[p(J)ein'] = [p[J)eine]e-2nivn , (3.1) 

for any P(J), where Y is the unperturbed storage ring tune. For this reason, 

Ruggiero tailors his formalism to the harmonic expansion 
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P(O-) = ; pn(J)ein' , 
n=-m 

(3.21 

where the coefficient functions p"(J) are to be computed perturbatively. 

The distribution PO introduced in the preceeding section turns out to 

correspond to n=O, at least for small T and far from linear resonance [7]. Thus 

Ruggiero conducts his perturbative analysls under the assumption that p" is much 

larger than all but at most one (n=N, for definiteness) p nir0 
. 

Because go Is diagonal in the basis (3.2), Ruggiero separates out the diagonal 

from the nondiagonal terms in (2.4), writing, in an obvious notation, 

(l-G""] p" = mfnGnmpm . (3.3) 

Note that the objects G nm in (3.3) are now operators on functions of J only. (For 

continuity's sake, we have rearranged Ruggiero's expressions in inessential ways, in 

presenting (3.3) and the manipulations that follow.) 

For small I and 6, the Grimm with n#m are all naively of roughly the same (small) 

size, while presumably poyN>>pnfo'N, so that Ruggiero replaces (3.3) by 

(I-G"")P" g Gnopo + GnNpN (3.4) 

for n#o. The second term on the right is absent for n=N. For n=o, he substitutes 

(3.4) into (3.3) in order to obtaln 

[l-Goo)po 21 1 GOm(l-Gmn]-lGmopO . 
m#o 

(3.5) 

(Terms involving pN that one might have expected to see on the right turn out to be 

subdominant [22].) Ruggiero calls this the "renormalized Fokker-Plank equatlon," 

because, after the approximations that follow, it is formally identical to the 



-15- FERMILAB-Conf-85/18-T 

equation that one would write for C=O, but with extra C- dependent contributions to 

what would have been the noise term. 

For future reference, note that the existence of at most one large p 
nt0 

implies 

that at most one term (m=N) in (3.5)'s sum can be appreciable. 

In order to find simple but meaningful approximations to Gina and Gmo, Ruggiero 

makes the explicit assumption that 

E<<(fy3<<1 . (3.6) 

Physically, these inequalities ensure that damping and noise act much more slowly 

than any other dynamical process. In practice, Ruggiero seems to rely on a 

hierarchy of orders of magnitude that is sharper than (3.6), because in several 

expressions he expands through second order in C and through first order in 7. Thus, 

the true state of affairs seems to correspond to xT-O(c2), which is consistent with 

(3.6). We shall comnent later on the physical appropriateness of this 

Identification. 

In order to understand some of the manipulations that follow, it is useful to 

know how to represent the full operator G--including perturbations--as a product of 

exponentials. For simplicity, let us assume time-independent damping, and 

time-independent unperturbed linear force -~(2nv/T)~ s -XUJ~. Then 

G = expT[&-(v + o2 u'$-) + xw2& - v&l 

. exp [-Eg &I, (3.7) 

where c2 is the unperturbed mean-square half-height of the beam. With 
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J = !j(wx2 t v2/u) , 0 = -tan-'& , (3.8 ') 

the y-independent terms in the first exponent add to -2nva/ae, from which one 

directly recovers (3.1). 

It follows easily from the foregoing that the leading perturbative 

contributions to Gmo and Gem, for m#O, are 

GmO ~ ,-2nimv 
[-E g & l"O 

Gm E [-E $ &IO" , 

and that the leading perturbative contribution to 1-G" is 

(3.9) 

(1-G”) z -Ty [&(v + ~~~~~~~~~ - + [(C $ Y&)~]" 

E -Tx [&(v + e2~2&)]oo - $m~oe2nimvG0mGm0 . (3.10) 

(We can exclude m=O from the sumnation in (3.10) because the 00 component of !$ 

~2; vanishes identically.) By virtue of (3.10), the renormalized Fokker-Planck 

equation becomes 

Ty [$$[v + ,2w2&]]oopo 

t z G@"[$ eZnimv t (1-~~)-~]~~p~ s o . (3.11) 
m*O 
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At this point the natural temptation is to supplement (3.9) by replacing 

( l-Gm)-l with its leading behavior for small E and 7, namely, (l-e-2nimv)-1. 

However, Ruggiero does not do this for at least two reasons. First, if Gmn were 

replaced by e-2nimv, then the square brackets under the sumnation in (3.11) could 

effectively be replaced by 

e2nimv[ + + $ [,2nimvel)-l + $ (e-2nfmv-l)-l] = 0 , (3.12) 

since approximation (3.9) makes e 
2nimvGOmGm0 

an even function of m. In this way, 

the collision parameter E would disappear from (3.11) altogether, which is 

unacceptable. Second (although this is not stated explicitly in [4])if Gmn were 

replaced by e -2nim", then some (l-Cm)-’ would be singular whenever v was rational. 

Our experience with Hamiltonian dynamics leads us to expect that such singularities 

are artifacts of the perturbation method, and accordingly disappear when viewed in 

the proper light. 

For the first of these reasons Ruggiero extends his approximation for (l-Cm")-' 

beyond the naively dominant term. For the second reason, he carries out the 

necessary extension in the exponents in Cm", so as not to compound the presumably 

spurious singularities at rational v. This exponential approximation is carried out 
n 

as follows: First, one naively expands the decomposition in (3.7) to orders EL and Y 

to obtain 

cm” a e-2simv (l-c g & + ; (,$ g &)’ t yT & (vt, w 22&)}m . (3.13) 

One then observes that this is identical to the expansion to O(C2) and O(7) of 
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(3.14) 

This is the desired approximation to Cm". 

Note that this enables us to make some contact with conventional Hamiltonian 

theory, because, to leading order in C, (3.14) is equivalent to 

exp - 2nim [V - &(&FF( ~cosg)~) 

whose exponent is (-2nim) times the familiar first-order amplitude- dependent 

beam-beam-shifted tune [9]. First order Hamiltonian nonlinear resonance occurs at 

amplitudes J for which (3.15) is equal to unity for some nonzero m. 

The final result of all these manipulations--namely (3.11), supplemented by 

(3.9) and (3.14)--has these significant virtues: 

-If one neglects the O(C2) term In (3.14)(one can show22 that this is not 

inconsistent with assuming yT=0(~~] in (3.10) and 3.11)), then an argument based on 

(3.6) shows (modulo concerns about making approximations before infinite sums are 

evaluated) that the operator (1-Gmn)-' reduces simply to multiplication by an 

m-dependent function of J. 

-With this simplification, one can show that (3.11) reduces to 

0 = &(yJ t [yo2wJt~2~2,$“,2{$ t 
m 

Re [e -2nimv(l-Gn)-1])]$J)p0 , 

where 

(3.16) 
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fm(J) 3 IEae-im'f( $%ose]$ , (3.17) 

and where we have used (3.9), and the fact that Cm" transforms into its complex 

conjugate when m changes sign. From (3.16), we see that, within this scheme, 

beam-beam collisions can be thought of as renormalizing noise in an 

amplitude-dependent way. More importantly, (3.16) enables us quickly to find a 

nonsingular solution for p", by ignoring the outside d/dJ, and then trivially 

integrating the first order ordinary differential equation that remains. 

-Finally, we note that a formalism that focuses on p" is in principle ideally 

suited to calculations that use--as did Kheifets--emittance as a stand-in for the 

square of the vertical coordinate. In particular, (2.9) in the present context 

becomes 

$, ( x2+v2/w2]P(x,v)dxdv = $;JdJ/;'P(J,$)de 

= ? &p’(J]JdJ , (3.18) 

where no approximations have been made. 

Together with these virtues, Ruggiero's formalism has the following 

shortcomings: 

-It is difficult to see how systematically to compute corrections to Ruggiero's 

approximate calculation of p", because the perturbations are treated in very 

different ways in different parts of equations (3.5)/(3.16): Explicit expressions 

for Cm0 Orn ,G , and(l-Go') are obtained by conventional expansion in powers of E and 7, 

while an explicit expression for (1-Gm)-’ is obtained by power expansion of the 

exponents in a particular factorization of Gmn. 
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-It is not clear that the relative orders of magnitude of C and 7T are treated 

realistically in this formalism. In approximating (1-G"). the perturbation 

expansion is truncated at O(E2) and O(7); in demonstrating that (l-Cm")-' is a 

multiplication operator, O(7) is retained while O(CL) is discarded. Experimentally, 

7T generally lies between ,001 and .OOOl, while F can be as large as .06, so that C2 

and E3 can be as large as about .004 and .0002 respectively. Thus, one might want 

to regard O(C3) and O(yT) as roughly equivalent. This would still be consistent 

with (3.6). 

-Finally, the infinite sum that defines the multiplicative approximation to 

( l-Gm)-l is somewhat combursome. For this reason Ruggiero attempts, within his 

idealized one-dimensional model, to draw some quantitative conclusions about the 

beam-beam instability threshold directly from the form of (3.16), without actually 

generating an explicit graph of p" vs. J. We conclude this section by sketching 

his reasoning, and offering a few conments. 

Ruggiero begins by supposing that the onset of beam blowup corresponds to the 

appearance of a range of J in which p" becomes substantially flatter than the 

otherwise rapidly decreasing unperturbed distribution exp-J/02w. According to 

(3.16), PO can deviate from exp-J/02w only when the quantity in curved brackets in 

the sum is substantially different from zero for some nonzero m, and this happens 

only in some small region, 0 f computable width, about a value of J for which (3.15) 

is equal to unity. Since the effect of one such "resonance" acting in isolation is 

presumably weak, Ruggiero asserts that a necessary condition for this flattening is 

substantial resonance overlap. Accordingly, Ruggiero (1) chooses JR, a reference 

value of J; (2) computes the value of m that corresponds roughly to the resonances 

overlapping (according to his definition) at JR; (3) approximates the sum in (3.16) 

by the term corresponding to that value of m; and, finally, (4) requires that the 

nonsingular solution of (3.16), so approximated, be nearly flat at JR. This yields a 

threshold condition for blowup in the form C>Cth(JR,T7,0,w). 
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I have the following misgivings about this type of construction: 

-The notions of the reference action JR, and of flattening, appear to be ad 

hoc, and without phenomenological basis. 

-Flattening per s does not ensure that a beam distribution will empirically 

look "blown up," unless the flattened region contains a significant fraction of the 

total beam population. Ruggiero's threshold calculation does not include an 

estimate of the beam population in the flattened region. 

-The notion of resonance overlap requires several terms simultaneously to 

contribute significantly to the sum in (3.5), and this is not obviously consistent 

with the one-dominant-p"" assumption on which the renormalized Fokker-Planck 

equation is based. 

-Finally, Ruggiero's rush to implement resonance overlap seems premature in the 

light of computer simulations ([17],[18]) that suggest that isolated nonlinear 

resonance can play a significant role in beam blowup in circular electron-positron 

colliders. (Note, however, that Ruggiero's resonances need not be completely 

equivalent to nonlinear resonance. See below.) 

In any event, his tuneshift threshold turns out, numerically, to be much higher 

than anything measured experimently, as is characteristic of one dimensional models, 

even in nonstatistical framworks [a]. 

IV. MY FORMALISM 

The most significant difference between my approach and Ruggiero's is 

illustrated in Figures 3 and 4. Figure 3 shows unperturbed (harmonic oscillater) 

orbits in the phase space of the one-dimensional model of the preceeding section. 

These orbits follow curves of constant J. Figure 4 shows, schematically, 

Hamiltonian orbits for the same model, but with nonzero E included. A particle 

moves along one of the curves shown, while the entire topographical pattern of 

curves rotates, with shear, about the origin, repeating itself every period T. 
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Figure 3 Figure 4 

The curves that do not encircle the origin, forming an "island chain," correspond to 

nonlinear resonance. In Ruggiero's formalism, the presumed dominant contribution to 

the equilibrium beam distribution is constant on the curves shown in Figure 3; in my 

formalism, the leading approximation to the equlllbrium distribution is constant on 

the curves shown In Figure 4. 

These two points of view are nearly equivalent for the parts of phase space 

that lie near the origin or beyond the island chain. Near the island chain they are 

evidently quite different. In the first-order theory of nonlinear resonance [9], 
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the radius of such a chain corresponds roughly to a J such that (3.15) is equal to 

one, for some nonzero integer m. 

Physically, the beam distribution in my scheme is approximately constant on the 

orbital curves of Figure 4 (or their higher-dimensional analogues) because, in the 

small-r limit, collections of particles are smeared along by the Hamiltonian flow 

more rapidly than they are transported across Hamiltonian orbits by damping or 

noise. (This can also be argued in a more formal way.) 

This kind of approximation has several significant virtues: 

-It provides a systematic way of reducing the problem of finding an equilibrium 

beam distribution function of 2d phase space variables (plus time) to a 

corresponding problem involving d variables (plus time). 

-It is not difficult to implement explicitly, because the equations that 

describe orbital curves (or their higher-dimensional analogues, KAM tori) often can 

be approximated in simple ways [9]. For example, in the case of Figure 4, the 

curves close to the origin or well beyond the island chain are given approximately 

by J=constant, as when E=O; while close to the resonant island chain they are given 

by 

a (~-5~)~ t bcos[s t 6(++t)] E constant, (4.1) 

where the parameters a,b,Jr,6, and w are readily computable. 

-It satisfies a relatively simple partial differential equation, which is 

derived by first directly substituting the ansatz {P(?,?,t)= constant on KAM tori} 

into the Fokker-Planck equation, and then, in the result, replacing certain 

coefficients by suitably defined averages over oscillatory dependence on time and on 

(perturbed) canonical angles. 
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For example, in the case of the one-dimensional model discussed in the 

preceeding section, this "thermally averaged" Fokker-Planck equation takes the form 

0 = (-&t7+&"v~ g + 0121J2Jf"(~]2~ &]}p(1,t) , (4.2) 

where e and I are perturbed canonical angle and action, with C#O structure fully 

included. The integrals in (4.2) are to be regarded as functions of e,I, and t. 

Modulo "thermal resonance" problems (see below) this is the first term in a 

systematic expansion in powers of 7. Notice that (4.2) is a continuous-time 

equation, not a single-time eigenvalue condition as in (2.4). Therefore, in 

determining equilibria, equation (4.2) must be supplemented with some sort of 

time-periodicity constraint. The higher-dimensional version of (4.2) is no more 

complicated. 

By contrast with the expressions derived by Kheifets and by Ruggiero, neither 

equation (4.2) nor its solutions exhibit small-denominator singularities in the 

limit of vanishing damping and noise. These have been replaced by gentler 

topological discontinuities in the de integrals at the island-chain boundaries, 

because a de Integral is equivalent to a line integral along an orbit curve, and at 

a chain boundary an orbit curve that encloses the origin abruptly breaks into 

several segments, each forming only half of an orbit curve that encloses an island 

center. 

At present, this scheme faces the following difficulties: 

-We cannot formulate the thermally averaged Fokker-Planck equation where the 

Hamiltonian dynamics is chaotic, i.e. where KAM surfaces do not exist. This is not 

necessarily fatal, because previously cited computer results do suggest that at 

least some observed colliding beam behavior is associated with nonchaotic single 

resonances. Moreover, even if chaotic effects did in fact turn out to dominate 

colliding beam physics, we might still hope to use this formalism to understand 
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their onset, since, according to Chirikov [19], chaos can develop out of the overlap 

of otherwise nonchaotic isolated resonances. 

-Even though it involves fewer phase space variables than its exact 

counterpart, the thermally averaged Fokker-Planck equatlon is at present s ti 11 too 

difficult to solve for more than one degree of freedom. Efforts to identify limits 

in which the equation is separable, or possesses some helpful symmetry, have so far 

not succeeded. The reader is invited to try his or her own hand at this game. A 

useful place to start might be the particularly interesting limit in which resonance 

streaming ([17];see also [9],sections III. 2.d,IV. 3.b, and V.3) is conspicuous. 

-The averaging procedure that leads to (4.2) and its higher-dimensional 

counterparts involves evaluating limits of the form 

$g $idte 
i[nn+Z.ZJt 

3 (4.3) 

where st = 2a/T, n and 8 are integral, and the components of ? are the canonical 

angular frequencies of the fully perturbed canonical angles 2 that parametrize some 

KAM surface. In deriving the thermally averaged Fokker-Planck equation, it is 

assumed that averages of the form (4.3) vanish identically, unless n= 8=0. However, 

strictly speaking, this is true only if nR+?.~ is nonzero for all n and z; whereas 

in fact there is in general a countable but dense set of KAM surfaces on which this 

is false. 

The vanishing of nn+?.G for some n and ?, in this statistical context, is 

called "thermal resonance." It is distinguished from nonlinear resonance In that G 

is a multplet of fully perturbed frequencies. In nonlinear resonance, on the other 

hand, an approximate 2 is substituted into nn+z.z=O in order to locate the center of 

what is to become a resonant island. In principle, thermal resonance can glve rise 

to structure that is superimposed on the familiar island structure of nonlinear 
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resonance. Are these two types of resonance mixed together in the small 

denominators in Kheifets' and/or Ruggiero's formalism(s)? 

In arguing for thermal averaging, I am tacitly hoping that thermal resonance 

can be ignored because it only takes place on a set of measure zero in phase space. 

Is this fair? I have explored three different ways of answering this question: 

(1) I have adapted methods from the theory of the Feynman path integral, 

reasoning that it may be easier to study a path, that can encounter thermal 

resonances sequentially, one at a time, than to study an entire distribution, which 

could suffer from many resonances in many different locations simultaneously [6]. 

One can go quite far in developing such path techniques, but as yet not far enough 

to yield a clear statement about thermal resonance. (2) I have studied the 

statistical behavior of linear systems near linear resonance [7], which have some 

formal features in comnon with nonlinear systems in the presence of thermal 

resonance. My results suggest that thermal resonance for small 7 can give rise to 

pronounced but very narrow structures in phase space. 

(3) I have numerically studied the system 

i = + pQ(x2+p2) 

b + r[t)p - k(tjE(t] = - x Q[x2+p2) , (4-4) 

where the function Q is not constant [16]. This system faces thermal resonance 

problems in equilibrium whenever x(t)/x2(t) is not independent of time. (4.4) is 

especially suited to numerical work because it can be solved explicitly when 7 and i 

vanish. The solution is simply 
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cosAtQ( x;+p;, 

-sinAtQ(x$p$ 

In practice, I represent damping and noise by lumped kicks separated by time At; and 

between kicks I have x and p evolve according to the map (4.5). Thermal averaging 

leads one to expect that the equilibrium distribution for (4.4), for small x and A, 

is given approximately (up to normalization) by 

exp - &$(x2+p2) , (4.6) 

where < > indicates time average. My data has not yet shown significant departures 

from this Gaussian. 

V. CONCLUDING REMARKS: ANALYTICAL THEORY vs. COMPUTER SIMULATION 

We must conclude that computer simulation at present compares very favorably 

with other available theoretical approaches to electron-positron storage ring 

analysis: It Is not restricted to one or two degrees of freedom; it is not 

restricted to weak/strong systems; and it is not restricted only to perturbative 

limits. However, at present computer simulation has two significant weaknesses: 

-We do not yet know, in an algorithmic way, how best to choose the operating 

conditions that a numerical study should preferentially simulate. I.e., computer 

simulation is not yet systematic in an optimized way. 

-Computer simulation has so far been ill-sulted to the calculation of loss 

rates or beam lifetimes. Numerical models typically simulate several hundred 

"macroparticles" for a few damping times; thus they can simulate loss rates as low 

as about one part in lo2 per damping time. However, at CESR, for example, lifetimes 

of about a hundred minutes, equivalent to loss rates of about one part in lo7 per 
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damping time, can be fatal (because of background in the CLEO detector)[ZO]. 

Personally, I feel that it is too much to hope that intuitive, back-of- 

the-envelope or hand-calculator theory will ever completely supplant large scale 

computer simulatlon of electron-positron circulating colliders. At the same time, 

It is perfectly reasonable to hope that further theoretical research will teach us 

how to make simulations better and faster, and how to learn much more from them. 

High energy physics has so much to gain from an increased understanding of 

collider behavior. Let us hope that more scientists give the subject serious and 

creative attention. 
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